
Fitting Models to Data
In this example, we want to find the function of a given form that best fits a large number

of data points. In order to do that, we use Python to compute the least squares

approximation to a linear system.

Toronto Stock Exchange Index

We will use data from the Toronto Stock Exchange (available via open.canada.ca). More

specifically, we use monthly values of the S&P/TSX Composite Index over the past 10

years (2013-10 to 2023-09). This index is based on around 250 of the largest Canadian

companies, so it can be used as an indicator of the overall strength of the Canadian

economy.

First, we input our 120 data points in Python as a 120x2 matrix, with time points in the

first column and the corresponding index values in the second column.

Next, let's plot the data to see how the TSX index has changed over the last ten years.

In [13]: import numpy as np
import scipy.linalg as la
import matplotlib.pyplot as plt
import math

In [14]: TSX = np.array([[2013.75, 12787.20], [2013.83333333333, 13361.26], [2013.91666666667

In [15]: t = TSX[:,[0]]
y = TSX[:,[1]]
plt.scatter(t,y,alpha=1,lw=0,s=8);
plt.show()

https://open.canada.ca/en/using-open-data

Linear regression

Suppose we want to find a linear function

that describes the value of the TSX index as a function of time. Obviously, we cannot

find a single line that fits all the 120 points. Instead, we determine the line that gives the

best possible fit. This means that we want to approximate the system , where

to find the coefficients and of the linear function.

Typically we consider the best fit to be the line with the smallest sum of squared errors,

To find this least squares solution, we can either solve the normal equations or use the

QR decomposition. Let's take the normal equation approach for now: in this case we find

the unique solution to the system

y(t) = c0 + c1t

A→c = →y

A =

⎡⎢⎢⎢⎢⎣

1 t1

1 t2

⋮ ⋮
1 t120

⎤⎥⎥⎥⎥⎦
, →c = [c0

c1
] , and →y =

⎡⎢⎢⎢⎢⎢⎣

y1

y2

⋮
y120

⎤⎥⎥⎥⎥⎥⎦
,

c0 c1

SSE =
120

∑
i=1

(yi − (c0 + c1ti))2 = ∥→y − A→c∥2.

AT A→c = AT
→y .

[[-1.43877955e+06]
 [7.20874856e+02]]

We have now found the coefficients and for the line with best fit. Let's plot this line

together with the data points.

As we can see, the red line gives a fairly good linear approximation to our large set of

data points (in fact, the best possible line with respect to the sum of squared errors).

Note that the index value shows quite significant fluctuations, though, so the linear

function is not necessarily a very accurate description of the index price at all times.

However, it could still be useful as a description of the general trend of the stock market.

(When making long-term investments, we maybe do not care much about the smaller

fluctuations, but rather we are interested in the long-term trend of the market.)

We can compute the norm of the residual vector (the difference between values on the

line and the data points) to measure how well the line fits the data. The value won't

maybe tell us much on its own, but we can use it to compare with the fit of other

functions to the same data.

13138.774067621729

In [16]: A = np.column_stack([np.ones(120),t])
c = la.solve(A.T @ A, A.T @ y)
print(c)

c0 c1

In [17]: tl = np.linspace(2013.75,2023.75,120, endpoint=False)
yl = c[0] + c[1]*tl
plt.plot(tl,yl,'r',linewidth=2)
plt.scatter(t,y,alpha=0.8,lw=0,s=8);
plt.show()

In [18]: np.sqrt(np.sum((yl-y.T)**2))

Out[18]:

Polynomial regression

We can also use the same method to find the polynomial function of a certain degree

that best fits the TSX data. For instance, let's consider finding a quartic function

, this time using the QR decomposition

(numpy.linalg.qr).

The least squares approximation is the solution to

where is the thin QR decomposition of the Vandermonde matrix

[[-1.09728099e+14]
 [2.17434694e+11]
 [-1.61573634e+08]
 [5.33616227e+04]
 [-6.60873332e+00]]
/tmp/ipykernel_88/2384024634.py:4: LinAlgWarning: Ill-conditioned matrix (rco
nd=1.71132e-25): result may not be accurate.
 cc = la.solve(R1,b[:5])

We get a warning that the matrix is ill-conditioned, but we will ignore the warning for

now, since this is only an illustration.

y(t) = c0 + c1t + c2t2 + c3t3 + c4t4

→c

R1→c = QT
1 →y ,

A2 = Q1R1

A2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 t1 t2
1 t3

1 t4
1

1 t2 t2
2 t3

2 t4
2

⋮ ⋮
1 t120 t2

120 t3
120 t4

120

⎤⎥⎥⎥⎥⎥⎥⎦
.

In [19]: A2 = np.column_stack([np.ones(120),t,t**2,t**3,t**4])
Q1,R1 = la.qr(A2,mode='economic')
b = Q1.T @ y
cc = la.solve(R1,b[:5])
print(cc)

In [20]: tq = np.linspace(2013.75,2023.75,120,endpoint=False)
yq = cc[0] + cc[1]*tq + cc[2]*tq**2 + cc[3]*tq**3 + cc[4]*tq**4
plt.plot(tq,yq,'r',linewidth=2)
plt.scatter(t,y,alpha=0.8,lw=0,s=8);
plt.show()

https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html

10756.545083258956

Generally, the higher the degree of the polynomial function, the more closely it can fit

the data. That is usually a good thing, but it is worth keeping in mind that:

Higher accuracy comes at the price of more calculations.

If we continue to increase the polynomial degree, we run the risk of "overfitting",

meaning that the approximating function is too closely modelled after the particular

data used and might therefore not work well on another data set.

Ultimately, one should not only look for a close fit but also consider what would be a

suitable model function.

Is the function reasonable? Even though we could fit a 119-degree polynomial

exactly to the data points in this example (good for interpolation between the

points), it would not make sense to use it for predicting future outcomes.

What will we use the function for? Are we aiming for a sophisticated but

complicated model or rather a linear model that is obviously very crude but also

very easy to interpret and use?

In [21]: la.norm(yq-y.T)

Out[21]:

Other types of regression

We could also try to fit other types of functions to the data. When studying financial

markets like the Toronto Stock Exchange, we might want to consider an exponential

function

In this case, the coefficients and are not directly given as the solution to a linear

system. However, we can make the system linear by taking the logarithm on both sides:

Let be the vector with and write and . Then we can find

 and as before by solving

[[-7.64273431e+01]
 [4.26637328e-02]]

Let's plot the exponential function to see how well it fits the data points.

y(t) = αeβ t.

α β

ln(y(t)) = ln(α) + βt.

→z zi = ln(yi) c0 = ln(α) c1 = β

c0 c1

AT A→c = AT
→z .

In [22]: cexp = la.solve(A.T @ A, A.T @ np.log(y))
print(cexp)

In [23]: texp = np.linspace(2013.75,2023.75,120,endpoint=False)
yexp = np.exp(cexp[0] + cexp[1]*texp)
plt.plot(texp,yexp,'r',linewidth=2)
plt.scatter(t,y,alpha=0.8,lw=0,s=8);
plt.show()

In [24]: la.norm(yexp-y.T)

12596.021396691656

The fit is somewhat better than with linear regression, although the difference is not very

big. The coefficient is of particular interest here, since

gives the annual return of the stock exchange index under this exponential model.

0.043586911748686896

The annual return is around 4.4%, which is important information when we want to

consider different investment options.

Note! When we transform the system by taking the logarithm, we actually do not get the

least squares solution. Instead of minimizing the sum of the squared errors, we minimize

the sum of the squares of the logarithms of the errors. This means that the fit will be

better for smaller values than for large. In this case, it would actually be better to use a

weighted least squares method instead, but we won't discuss that here, so you can find

out more about that on your own if you wish.

Out[24]:

β

= − 1 = eβ − 1
y(t + 1) − y(t)

y(t)
αeβ(t+1)

αeβt

In [25]: math.exp(cexp[1]) -1

Out[25]:

