
Computing eigenvalues

Power Iteration

Suppose the matrix has a dominant eigenvalue , meaning that has multiplicity 1

and for all other eignevalues . Choose a random starting vector and

compute the (normalized) power iteration algorithm:

The result typically- converges to an eigenvector for , and the value can then be

computed via the Rayleigh quotient

The function below computes a given number of iterations in the power method.

Let us test the algorithm on a matrix. For this example, we will use

The starting vector can be chosen arbitrarily.

In [1]: import numpy as np
import scipy.linalg as la
import matplotlib.pyplot as plt

np.set_printoptions(suppress=True)

A λ1 λ1

|λ1| > |λ| λ x0

xk+1 =
Axk

∥Axk∥∞

λ1 λ1

λ1 ≈ .
xT Ax

xT x

In [2]: def powerMethod(A, x0, iterations, showSteps=False):
 xk = x0
 for k in range(0,iterations):
 if (showSteps):
 print('k={0}\n{1}\n'.format(k,xk))
 xk = A@xk
 xk = xk/np.max(np.abs(xk))
 return xk

3 × 3

A =
⎛⎜⎝

1 1 0
2 1 −1
0 −1 1

⎞⎟⎠ .

x0

In [3]: A = np.array([[1,1,0],[2,1,-1],[0,-1,1]])
x0 = np.array([[1],[0],[2.00001]])

k=0
[[1.]
 [0.]
 [2.00001]]

k=1
[[0.4999975]
 [-0.000005]
 [1.]]

k=2
[[0.49999]
 [-0.00001]
 [1.]]

k=3
[[0.499975]
 [-0.00003]
 [1.]]

k=4
[[0.49993]
 [-0.00008]
 [1.]]

[[0.49981002]
 [-0.00021997]
 [1.]]

We can see that already after a few steps, the change is quite small for each iteration.

Let's do a larger number of iterations.

[[-0.57735027]
 [-1.]
 [0.57735027]]

Compute the Rayleigh quotient to approximate the corresponding eigenvalue:

array([[2.73205081]])

In [4]: xk = powerMethod(A, x0, 5, True)
print(xk)

In [5]: xk = powerMethod(A, x0, 50)
print(xk)

In [6]: xk.T @ A @ xk / (xk.T @ xk)

Out[6]:

Since here is a matrix, we are also able to find the exact eigenvalues and

corresponding eigenvectors. We get that

In particular, we can see that and agree with what we got numerically using the

power method.

Inverse Iteration

Suppose the matrix is invertible (which it is in this case). Then the smallest eigenvalue

 (in absolute value) of corresponds to the dominant eigenvalue of .

Choose a random starting vector and compute the (normalized) inverse iteration

algorithm:

The result (usually) converges to an eigenvector of for (which is also an

eigenvector of for).

[[-0.57735026]
 [1.]
 [0.57735029]]

A 3 × 3

λ1 = 1 + √3 ≈ 2.73205, λ2 = 1, λ3 = 1 − √3 ≈ −0.73205

v1 =
⎛⎜⎝

1

√3
−1

⎞⎟⎠ , v2 =
⎛⎜⎝

1
0
2

⎞⎟⎠ , v3 =
⎛⎜⎝

−1

√3
1

⎞⎟⎠ .

λ1 v1

A

λn A 1/λn A−1

x0

Ayk+1 = xk, xk+1 =
yk+1

∥yk+1∥∞

A λn

A−1 1/λn

In [7]: def invIteration(A, x0, iterations, showSteps=False):
 xk = x0
 LU,P = la.lu_factor(A)
 for k in range(0,iterations):
 if (showSteps):
 print('k={0}\n{1}\n'.format(k,xk))
 xk = la.lu_solve((LU,P),xk)
 xk = xk/np.max(np.abs(xk))
 return xk

In [8]: xk = invIteration(A, x0, 100, False)
print(xk)

QR Iteration

This is an algorithm for computing all eigenvalues of a matrix. Start with the matrix

. For each step , find the QR decomposition , and then compute

 and repeat. The matrices are similar and therefore they have the

same eigenvalues. The result is an upper (block) triangular matrix with eigenvalues on

the diagonal.

A0
[[1 1 0]
 [2 1 -1]
 [0 -1 1]]

A1
[[2.2 -1.38804419 -0.91287093]
 [-0.9797959 0.46666667 -0.74535599]
 [0. -0.74535599 0.33333333]]

A2
[[2.79310345 -0.58600402 -0.24913644]
 [0.30842317 0.00689655 -0.70564229]
 [0. -1.07703296 0.2]]

[[2.72925764 0.2659106 0.9061212]
 [0.11846865 0.31422062 -1.05443664]
 [0. -0.65794548 -0.04347826]]

Increase the number of iterations:

[[2.73205081 -0.35355339 0.82158384]
 [0. 1. -0.4472136]
 [0. -0. -0.73205081]]

We can see the eigenvalues of on the diagonal of the matrix .

A0 = A k Ak = QkRk

Ak+1 = RkQk Ak

In [9]: def QRMethod(A, iterations, showSteps=False):
 Ak = A
 for k in range(0,iterations):
 if (showSteps):
 print('A{0}\n{1}\n'.format(k,Ak))
 Q,R = la.qr(Ak)
 Ak = R @ Q
 return Ak

In [10]: print(QRMethod(A, 3, showSteps=True))

In [11]: print(QRMethod(A, 75))

A Ak

PageRank example

One situation where we can apply the power method is when finding the PageRank

vector of a given directed graph. This method has (at least previously) been used by

Google to rank webpages that match a search query in order to provide the most

relevant results. In this example, let's consider the graph below.

The corresponding transition matrix (a stochastic matrix) is given by

where each entry denotes the probability of moving from vertex to vertex when

selecting edges uniformly at random. In order to ensure that the power method will

converge, we need to add a small modification. At each step, with probability we follow

a link selected uniformly at random, while with probability we immediately jump to

a randomly selected webpage. We get the Google matrix

where is the teleportation factor, is the distribution of selecting a random

page to jump to, and is a vector with all entries 1. Commonly is taken to be the

uniform distribution over all vertices, in which case is the matrix with every

entry equal to .

P

P =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 1/2 0 1/2
1/3 0 0 0 0

0 1/2 0 1 1/2
1/3 1/2 0 0 0
1/3 0 1/2 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
pi,j j i

α

1 − α

αP + (1 − α)veT ,

α ∈ (0, 1) v

e v

veT N × N

1/N

[[0.03 0.03 0.455 0.03 0.455]
 [0.31333333 0.03 0.03 0.03 0.03]
 [0.03 0.455 0.03 0.88 0.455]
 [0.31333333 0.455 0.03 0.03 0.03]
 [0.31333333 0.03 0.455 0.03 0.03]]

Any Google matrix has the dominant eigenvalue 1, and there is a unique stochastic

vector which is a corresponding eigenvector. This is the PageRank vector, and each

entry can be taken as a measure of the relative importance of a particular webpage,

since that value represents the long term probability of visiting the page after a large

number of steps in the "random surfing" process.

[0.24698816 0.09997998 0.2881266 0.14247147 0.22243378]

In this example, we can see that webpage 3 gets the highest PageRank weight, which

seems reasonable given that it is the only page with links from at least three other

pages. Webpages 1 and 5 are not very far behind, and this can partly be explained by the

fact that they are the pages that receive links from the most important one (webpage 3).

On the other hand, webpage 2 has a clearly lower number than the rest, being linked to

only from a single other page.

In [12]: P = np.array([[0,0,1/2,0,1/2],[1/3,0,0,0,0],[0,1/2,0,1,1/2],[1/3,1/2,0,0,0],[
ee = np.ones(5)
vv = ee/5
alpha = 0.85
GM = alpha * P + (1-alpha) * np.outer(vv,ee)
print(GM)

x

In [13]: xpr = powerMethod(GM, vv, 50)
print(xpr/np.sum(xpr))

A few comments

In case there is a vertex without any outgoing edges (i.e. a webpage without any links at

all), then the corresponding column in is replaced by before forming the Google

matrix. This will ensure that the Google matrix is stochastic, i.e. in every column the

entries add up to 1.

On the role of the factor :

If is small (close to 0), then for the most part we have completely random jumps,

and so the webpage structure described in is "lost". This is clearly not good for

ranking the webpages, so ideally we want a large .

On the other hand if is too large (close to 1), the convergence gets very slow.

Remember that if would equal 1 we might not get convergence at all.

The Google matrix is usually huge, with thousands or millions of webpages to be

ranked, so even though the adjacency matrix is sparse (lots of zeros) we still don't

want to do too many iterations. The value is frequently used, so probably

it is considered some sort of optimal balance between structure and speed.

To have a high value in the PageRank vector, it is helpful to receive links from a lot of

other webpages, and/or to receive links from webpages that themselves have a very high

PageRank value. This has led to some problems in the form of large websites with a high

reputation selling links to other sites that are trying to boost their PageRank score. As

this does not necessarily make the other webpages any more relevant for the Google

search queries, such a business is harmful for the efficiency of PageRank to produce

good results. Google has tried to combat this manipulation by penalizing sites (e.g. lower

their score) and updating their algorithms many times over the years. Today the actual

method that Google uses is probably much different and more advanced than what is

described briefly here.

P v

α

α

P

α

α

α

α = 0.85

In []:

